
Color Spectrum:
Next Paradigm for Decentralized Apps

Table of Contents

Table of Contents 1

Introduction 1

Color Spectrum Overview 3

Two-tier Architecture of Color Spectrum 4

Clouds in Color Spectrum 4
Logic Runner 5
Invoking dApps 6
Component of Cloud Infrastructure 8

Bridging Cloud with Blockchain 10

Minimal Viable Product 10

DApp development and deployment 11

Introduction

Color Spectrum is a powerful new technology that leverages the blockchain in a robust
cloud environment for an optimal balance of performance and security.

Motivation

All modern blockchain technologies face several major issues:

1. Simplicity of smart contracts​​. Blockchains have inherent limitations on
duration of code execution.

2. Sequential execution of transactions in sequential blocks downgrade the
whole network to the power of a single computer, that produces the blocks.

Color Spectrum is devoted to overcome these limitations to equip developers with
powerful coding tools and provide them with an efficient execution environment.

Decentralized Applications, dApp ​​- is the new buzzword, that was coined along with
blockchain and distributed ledger. “Decentralized” means that neither user, nor even
developer know where exactly in the infrastructure an application runs. This execution
model was called “fog computation”, similar to cloud computing.

When we designed Color Spectrum, we kept in mind the limitations induced by
blockchain design, but still keeping the value of decentralized execution of dApps.

Many blockchain projects deemed to overcome the shortcomings of dApp approach,
first introduced in Ethereum. Generate blocks faster to increase performance (e.g.
EOS), introduce block DAG instead of chain to make concurrent execution (e.g.
RChain). But they all keep the original feature of “fog computing” - calls to dApps are
mixed with data, and code is executed by miners (or block producers) in sequence
while building a block.

But running the code while building blocks is the root of all limitations on smart
contract execution. The time duration of code execution is limited, otherwise block
build time becomes prohibitively long. Execution is sequential and is performed by a
single computer - the one, that builds the block at the moment. The limitations are
inherent in the blockchain design, especially in code execution.

To overcome these limitations Color Spectrum took completely other way. In Color
Spectrum we decoupled code execution from storing data in the irreversible and
non-modifiable history (i.e. the blockchain).

The key point of Color Spectrum is the following: ​the code of dApps is executed
before transactions are written to the blockchain​​.

To save the value of decentralization Color Spectrum uses technologies of cloud
computing to conceal details of dApp deployment from the outer world. Furthermore,
cloud computing infrastructure gives the value of concurrent execution and efficient
utilization of computing resources.

Cloud infrastructure isolates execution of dApps while still running them on the same
platform. Container-based clouds provide small start-up time of service nodes and
deliver the property of serverlessness. On top of that, containers consume almost zero
resources until they are invoked to handle actual requests.

Color Spectrum Overview
The key difference between Color Spectrum and many other blockchain platforms that
support smart contracts execution (e.g. Ethereum, NEO, EOS, and others) is the way
how transactions are executed. In other platforms typical lifecycle of a transaction
includes the following stages:

● Build Block: Clients propose their transactions to a miner / bockbuilder and the
network disseminates it among all nodes, where one of the nodes builds a block
using the transactions.

● Execute: Transactions are sequentially executed one by one during
construction of a block by a miner / block builder and re-executed by other
nodes to verify state update that the block builder saved as a result of the block.

In order for all peers to synchronize the state, transactions must always execute
deterministically: the same transaction must always create the same result on each
node, no matter whether the block is being constructed or validated.

Furthermore, transaction execution time should be as short as possible. Sophisticated
code, with rich business logic takes longer time to execute, thus introducing latencies
and delays into block construction. This is the reason why many blockchain platforms
put limitations on smart contract execution - either by higher fees for CPU time (like
gas in Ethereum) or by limiting CPU time (like 30ms in EOS).

Color platform introduces a new paradigm of smart contracts Execute-Validate-Build
block:

● Execute: Transactions are executed in parallel. Developers use well-known and
powerful languages to code their dApps - Python, Javascript, Java.

● Validate: block builders check the results of transaction execution during block
construction and consensus.

● Build Block:​​ validated transactions are saved in blocks one by one.

Transactions in Color Spectrum are executed before they are put in a block. This allows
nodes to execute transactions in parallel, greatly improving throughput.

In the Color Spectrum execution model, the results of executing dApp code for a
transaction are explicitly agreed upon before the transaction is added to the ledger.

Color Spectrum focuses on providing developers with advanced coding practices. They
can develop dApps in almost any language they like, such as Python, Javascript, Java or
even C.

Two-tier Architecture of Color Spectrum

Figure 1. Two tiers of Color Spectrum

Decoupling the transaction execution from blockchain data storage leads to a
two-layer architecture. In the first layer Logic Runners are introduced, which execute
the business logic of decentralized applications. The second layer implements
blockchain operations for dApps.

Clouds in Color Spectrum
Running dApps in Logic Runners implies a number of requirements on the
infrastructure that hosts them.

We believe that developers should be able to implement the business logic of their
dApps in well-known programming languages, such as Python, Java, PHP, Javascript.

To prevent code injection and data modification, and ensure decentralization, the
Infrastructure should be able to launch dApp code at different physical locations, even
while handling subsequent requests. The infrastructure should monitor resources
consumption and launch Logic Runners on demand from clients.

Modern cloud infrastructures meet all the requirements listed above. They are
language-agnostic and execute code in any language thanks to containers. Clouds
monitor running containers and launch them at arbitrary nodes within their

infrastructure (this is why they are called “clouds”) and implement various resource
allocations policies.

The two-tier architecture of Color Spectrum resembles Hyperleger Fabric, but Color
Spectrum makes a great step forward. Hyperleger Fabric has a concept of “Endorsers”,
the nodes that execute a transaction before building the blocks. They name it
“execute-order” strategy. The Hyperleger Fabric introduces their own policies and
protocols to manage endorsers, support a very limited set of software technologies,
but provide almost no protection against cartels and code modification aimed at
endorsers. The cloud architecture in the Color Spectrum is much more advanced,
flexible, reliable and stable technology.

Logic Runner
Logic Runners are at the core of the Color Spectrum. They host the business logic of
dApps, perform processing of users’ operations, and store results to the underlying
blockchain. Business Logic of a dApp, hosted by a Logic Runner, is executed within a
devoted environment, provided by the Color Virtual Machine (CVM).

CVM provides execution environment for dApp code including language
environments, system software, middleware to communicate with API layer, storage
and blockchain.

The first release of Color Platform will include CVM capable running applications in
Java, Javascript, Python and (being considered) C/C++. A large part of our resources
will be devoted to this effort.

Figure 2 Logic Runner

Language-specific Execution Environment ​​provides the code base necessary to run
dApp business logic. For Java apps it is Java Runtime Environment, for Javascript -
Node.js or Web-assembly runtime, for C++ - necessary runtime libraries.

Connectors

dApps in the Logic Runners need to communicate with the environment. Such means
are provided by connectors. While all connectors are the same for all languages, each
runtime environment provide language-specific bindings.

State Database Connector allows dApp code to keep persistent variables between
invocations, such as wallet balance, asset owners, existing bets and so on. Through
connector dApps read and write values to state database.

Storage Connector provides dApps the capability to access distributed storage provided
by the platform. Using this connector dApps can create files, write to them, read files or
get status information. Color Platform will provide secure file vault for personal data,
and will be accessed through this connector in a secure and efficient way.

Blockchain Connector ​​allows low-level access to the blockchain, for reading. This
connector is designed for block viewers, analysis tools and other other facilities.

Color Platform doesn’t allow direct write access to the blockchain since it might ruin
synchronization between the Ledger and the State Database. All writes to the
blockchain should go through transactions to the State Database.

Terminal Node Connector ​​supports the communication channel between dApp and
terminal nodes. It receives requests from terminal nodes and sends back responses
from dApp. It could be used to implements push notifications or complex message
exchanges in AJAX style.

When dApp developers want to protect certain data types in their applications, the
Cryptography Service ​​will allow for the encryption and decryption of critical data. The
file service, meanwhile, will store dApp data in a distributed decentralized network
storage system such as IPFS or BigchainDB. These services will work together to
mitigate the difficulties of storing off-chain app logic in a decentralized way.

Communication Service implements low-level network operations that all other
connectors use. It provides transport and P2P protocols, secure channels and other
network-related operations required by connectors.

Invoking dApps

The Internet works behind curtains. The average Internet user doesn’t understand
how data packets are routed from Sydney to Tokyo ― the Internet should just work.

The Color Spectrum intends to make blockchain accessible to the average user by
simplifying the complexities and separating the back end for developers. When
launching a dApp, Color developers won’t have to worry about orchestrating a
complex smart contract or designing a decentralized storage system.

Color Spectrum provides unified Application Interface for application developers to
invoke their dApps hosted by cloud infrastructures. Load Balancing distributes tasks to
Logic Runners that execute dApps code and store results in the underlying blockchain.

Figure 3 Invocation of dApps

In Color Spectrum the business logic of dApps is implemented within Logic Runners.
Application Protocol Interface is the gateway that encapsulates the Logic Runners
from the outer world and routes data between Terminal Nodes and Logic Runners.

This component authenticates wallets that users’ utilize for transactions, establishes
secure connection between Terminal Nodes and Color Platform.

Call Router is key to operations of the platform. It receives requests from terminal
nodes, and selects the Logic Runner to serve the request. Sophisticated algorithms of
load balancing, load distribution, and load accounting ensure high performance of the
Platform and minimize the risk of data races.

Authentication

Each data stream from a Terminal Node to the Color Platform must carry a distinctive
identifier of a user that initiated it. The Color Platform utilizes wallet authentication -
the data streams are attributed with wallet ID, which is proved by a corresponding
private key during authentication phase.

Authentication doesn’t mean that a user needs to enter personal ID or password. It’s
major purpose is to ensure that all operations executed on behalf a specific wallet do
originate from that wallet.

Modern blockchains use digital signatures to ensure authenticity of requests, but
Color Platform targets much higher throughput. This is why we use secure channels,
protected with modern cryptography, to exchange data with Terminal Nodes. The
secure channel is established on mutual authentication, and the platform treats all data
transported within it as authenticated. Still requests that are know to result in
blockchain write must be explicitly signed by the Terminal Node.

Coin Transfer API

Color Platform provides dApps with facilities to pay and receive payments in Color
Coins or COL-based tokens. The Platform API includes dedicated calls to transfer
coins, lock them in a specific wallet, transfer between two wallets, setup allowance,
approve transactions, etc. dApps will obtain rich set of services to build business with
Color Coins.

Color Transfer API allows third-party wallets to view balance and perform transfers
with Color Coins.

Component of Cloud Infrastructure

In order to host dApp, cloud service providers that partner with Color Platform and
host Logic Runners, must deploy a number of components.

Figure 4 Cloud Components

Application Protocol Interface and Load Balancing

Color Spectrum uses JSON to encapsulate messages between terminal nodes and
corresponding Logic Runners, which execute the dApp business logic. Color Spectrum
prevents terminal nodes from direct connection to Logic Runners because such direct
connection might result significant security risks due to potential misbehaving and
compromise of Logic Runners.

Application Protocol Interface is a boundary that encapsulates the platform, protects
is from DDoS and (in the future) might be able to provide sophisticated analysis tools
to prevent malicious behavior.

Load Balancing distributes requests from terminal nodes to Logic Runners that run
corresponding dApp business logic. Each dApp is deployed at multiple Logic Runners.
Load Balancing enforces randomization in servicing terminal nodes to prevent risk of
running dApp at compromised specific Logic Runner.

Another task of Load Balancing facility is tracking the load of actual Logic Runners.
Amount of load is used to count the compensation from the network for running Logic
Runners.

State Database and Storage

Like almost all other blockchain-based platform the Color Platform is equipped with a
State Database​​. This database stores dApp persistent variables, such as wallet balance
or a list of purchases. dApp business logic that runs inside Color VM on Logic Runners
connects to the State DB to read and write variables, to update the state of the
application.

The State DB is tightly coupled with ​Block Builder that uses blockchain to store
permanently updates to DB.

When a dApp commits a transaction to the State DB, the latter fires a transaction with
new state values to the Color Ledger. One of the nodes in the ledger’s network takes
this transaction to build a block. Other nodes validate the block and add them to the
network.

Each new block from the network is used to update the state. Special care is taken to
resolve conflicts, when a state variable is used in a running dApp transaction and at the
same time it arrives in a new block. In this case the state is updated from the new block
and the transaction is restarted.

More complicated case happens when Block Builder faces two committed transactions
starting from the same state. In this case the Block Builder will reject one of them and
inform the Logic Runner that produced the rejected transaction that it needs to
re-execute the transaction again.

Color Platform equips dApps with ​Storage ​​to keep files and big blobs of data.
Operation with the storage will be synched with Block Builder transactions.

Bridging Cloud with Blockchain
To be completed soon

Minimal Viable Product
Minimal Viable Product of Color Spectrum will be released in November-December
2018. It will include a cloud infrastructure with a couple of dApps deployed and
blockchain backend.

Figure 6 MVP Architecture

MVP is built using Kubernetes cloud infrastructure and Hyperleger Fabric. Application
Protocol Interface and Load Balancer are based on Kong gateway. Registering
containers as endpoints should be done automatically by using Kubernetes Ingress
Controller for Kong. Container lifecycle controller monitors load and created new
Docker containers if needed - it will be implemented using Horizontal Pod Autoscaler.
System for getting metrics should be Prometheus as it can work both with Kong and
Horizontal Pod Autoscaler.

For database we consider Foundation DB. This is an open source NoSQL database with
ACID transaction support. For MVP we will develop a multi master synchronization
engine that uses Hyperleger Fabric as synchronization protocol.

DApp development and deployment
To be completed soon

